跳转至

插入排序

本页面将简要介绍插入排序。

定义

插入排序(英语:Insertion sort)是一种简单直观的排序算法。它的工作原理为将待排列元素划分为「已排序」和「未排序」两部分,每次从「未排序的」元素中选择一个插入到「已排序的」元素中的正确位置。

一个与插入排序相同的操作是打扑克牌时,从牌桌上抓一张牌,按牌面大小插到手牌后,再抓下一张牌。

insertion sort animate example

性质

稳定性

插入排序是一种稳定的排序算法。

时间复杂度

插入排序的最优时间复杂度为 \(O(n)\),在数列几乎有序时效率很高。

插入排序的最坏时间复杂度和平均时间复杂度都为 \(O(n^2)\)

代码实现

伪代码

\[ \begin{array}{ll} 1 & \textbf{Input. } \text{An array } A \text{ consisting of }n\text{ elements.} \\ 2 & \textbf{Output. } A\text{ will be sorted in nondecreasing order stably.} \\ 3 & \textbf{Method. } \\ 4 & \textbf{for } i\gets 2\textbf{ to }n\\ 5 & \qquad key\gets A[i]\\ 6 & \qquad j\gets i-1\\ 7 & \qquad\textbf{while }j>0\textbf{ and }A[j]>key\\ 8 & \qquad\qquad A[j + 1]\gets A[j]\\ 9 & \qquad\qquad j\gets j - 1\\ 10 & \qquad A[j + 1]\gets key \end{array} \]
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
void insertion_sort(int arr[], int len) {
  for (int i = 1; i < len; ++i) {
    int key = arr[i];
    int j = i - 1;
    while (j >= 0 && arr[j] > key) {
      arr[j + 1] = arr[j];
      j--;
    }
    arr[j + 1] = key;
  }
}
1
2
3
4
5
6
7
8
def insertion_sort(arr, n):
  for i in range(1, n):
    key = arr[i]
    j = i - 1
    while j >= 0 and arr[j] > key:
      arr[j + 1] = arr[j]
      j = j - 1
    arr[j + 1] = key